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The most central property of an infinite-dimensional Hilbert space is expressed by 
the projection theorem: Every orthogonally closed linear subspace is an orthogonal 
summand. Besides the obvious Hilbert spaces, there exist other infinite- 
dimensional orthomodular spaces. Here we study bounded linear operators on 
an orthomodular space E constructed over a field of generalized power series 
with real coefficients. Our main result states that every bounded, self-adjoint 
operator gives rise to a representation of E as the closure of an infinite orthogonal 
sum of invariant subspaces each of which is of dimension 1 or 2. The proof 
combines the technique of reduction modulo the residual spaces with theorems 
on orthogonal decompositions of finite matrices over fields of power series. 

1. I N T R O D U C T I O N  

Let E be a vector space over an involutory field (K, *) endowed with 
a Hermit ian form qb: E • E --> K. We always assume that qb is anisotropic, 
i.e., alp(x, x) = 0 only when x = 0. Then (E, qb) is called orthomodular  if 

every orthogonally closed linear subspace is a direct l inear supplement  of 

the whole space, 

(P) U C E,  U = U • 1 7 7  ~ E = U G U • 

where U l :=  {x E Eldp(x,  u) = 0 for all u E U}. 
If d im E < w, then the projection theorem (P) is trivially true since dp 

is anisotropic. In infinite dimension,  however, condit ion (P) is a very strong 
one. For a long time it was an open problem whether there exist infinite- 
d imensional  orthomodular  spaces different from the classical Hilbert spaces. 
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Then, in 1979, a new class of such spaces was discovered (Gross and Kanzi, 
1980). All of them are constructed over non-Archimedeanly valued, complete 
fields and are endowed with a natural non-Archimedean norm with respect 
to which they are complete. Since they were first introduced, many aspects 
of these spaces, such as, for example, Clifford algebras, measures, and orthog- 
onal groups, have been investigated. 

In Keller and Ochsenius (1994, 1995a) we began a study of bounded 
linear operators on non-Archimedean orthomodular spaces. In spite of numer- 
ous analogies between such operators and their classical counterparts, there 
arise some striking differences which sharply contrast them with their counter- 
parts on Hilbert spaces. For example, in Keller and Ochsenius (1994) we 
constructed an algebra of bounded, self-adjoint linear operators each of which 
has a one-point spectrum but does not admit any eigenvector, in fact not 
even an invariant subspace. These new features are rooted in the fact that 
the base field is never algebraically closed. 

In the examples mentioned above the underlying field is the completion 
of a field of rational functions, so its arithmetic is utmost rigid. In the present 
paper we will concentrate on a space over a field K = R((F)) of generalized 
power series with exponents in an additive group F of infinite rank and with 
real coefficients. Although this field is still far from being algebraically 
closed, its arithmetic is much smoother and the above strange phenomena 
nearly disappear. In fact, we shall reach a theorem on orthogonal decomposi- 
tions of bounded operators which is surprisingly close to the classical spec- 
tral theorem. 

To our non-Archimedean space (E, qb) there is associated a sequence 
of residual spaces/~,,, n = 0, 1 . . . . .  which turn out to be finite-dimensional 
inner product spaces over fields of power series in finitely many variables. 
A bounded operator T on E induces an operator 1",, on each/~,, (from some 
n = no on), and an orthogonal decomposition of T automatically induces 
such a decomposition of every Tn. The task of finding a spectral representation 
of T is thereby related to the problem of decomposing finite matrices over 
fields of power series. We begin by examining the matrix problem. 

In Section 1 we present a basic result (Theorem 2), which states that if 
K = R((fi . . . . .  t,,)) is a field of power series with real coefficients, then 
every symmetric matrix can be orthogonally diagonalized over K. The proof 
is based on a recursive construction and aims at an effective computation of 
the transition matrix. In Section 3 we examine orthogonal decompositions 
of (nonsymmetric) matrices which are self-adjoint with respect to more gen- 
eral inner products. Finally, in Section 4, these results are combined with the 
technique of reduction onto the residual spaces in order to establish the main 
theorem on orthogonal decompositions of infinite-dimension, bounded, self- 
adjoint operators. 
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The paper is expository. We shall outline the crucial proofs in order to 
throw the underlying ideas into relief; formal details will be omitted. 

2. DIAGONALIZATION OF S Y M M E T R I C  MATRICES 

Given any field Ko with char(Ko) ~ 2, we let K = Ko((0) be the field 
of formal power series in the indeterminate t with coefficients in K0, and we 
let v: K ~ Z U {w} be the usual exponential valuation. Thus for a typical 

= Zi~z ai ti in K we have v(o0 = min{i  ~ Z l a i  r 0} if c~ ~ 0, v(c0 = 
if o~ = 0. The valued field (K, v) is complete and henselian (Ribenboim, 

1964; Schilling, 1950). 
We consider the ring Mat,(K) of all square matrices of size n • n with 

entries in K along with the subring Mat,(Ko) consisting of all matrices with 
entries in the subfield K0 C K. We shall denote the matrices in Mat, (K)  by 

. . . . .  ~ . . .  and those in Mat,(Ko) by A . . . . .  U, . . . .  The unit matrix is 
always denoted by I. 

A matrix s~ e Mat,(K)  is called orthogonal if its transpose N* is equal 
to the inverse s~-~, i.e., if s~*s~ = ,~/s~* = I. We say that s~ is diagonal  if 
all entries outside the main diagonal are 0. 

We can now state the main result of this section. 

Theorem 1 (Keller and Ochsenius, 1995a). Let K = Ko((t)) and n -> 1. 
The following conditions are equivalent: 

(a) Every symmetric matrix A ~ Mat,(Ko) can be diagonalized by means 
of an orthogonal matrix U E Mat,(Ko). 

(b) Every symmetric matrix s~ ~ Mat , (K)  can be diagonalized by means 
of an orthogonal matrix ~ E Mat,(K).  

Outline o f  the Proo f  We only deal with the difficult part, namely the 
implication (a) ~ (b). Its proof is divided into several steps. 

1. Let there be given a symmetric matrix s~ of size n x n in Mat,(K).  
We may assume that all its entries ~xij satisfy v(oLij) >-- O. Expanding each aij 
as a power series o~ij = a! ~ + a!) ) t + a~ 2) t 2 + . . .  + a!~')f" + . . .  and 
collecting the coefficients of the same powers, we obtain a representation 

= A 0 + A t ' t + A 2 " t  z + "'" +A, , , ' f "  + --- 

where the A,, are symmetric matrices with entries in K0. 
2. It is easy to show that we may assume, without loss of generality, 

that the initial matrix A0 is diagonal but not a multiple of the unit matrix. It 
is only in this preliminary step where the hypothesis (a) is actually used. 

3. The orthogonal matrix ~ we are looking for will have the form 

= Uo + U~.t  + U z . t  z + . . .  + u , , . t "  + . . .  (1) 
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where U,, ~ Matn(Ko). The idea is to construct recursively matrices Uo, UI, 
. . .  in Matn(Ko) such that the resulting matrix OR given by (1) satisfies both 

OR*OR = 

and 

OR*~OR is diagonal 

These two conditions hold if and only if 

U~Uo=I, ~ u~U/=O for all m -  1 (2) 
i+j=m 

and 

Ui*AjUk is diagonal for all m >- 0 (3) 
i+j+k=m 

4. Now there arise two cases. If the diagonal entries of A0, i.e., the 
eigenvalues of A0, are pairwise different, then the recursive construction can 
be carried out directly starting with U0 := I. The conditions (2), (3) are just 
what we need to compute Um from Um-I . . . . .  U0, A . . . . . . .  A0. However, 
this is not possible when A0 has some eigenvalues repeated. The reason is 
that in the step from Um-I to U,n we cannot compute all the entries of Urn; 
unavoidably we have to make choices which in turn will have a strong impact 
on the computations in the next steps. These difficulties are not unexpected. 
Indeed, if A0 has some eigenvalues repeated, then the matrix s~ may have 
multiple eigenvalues and consequently the transition matrix OR is not unique. 
In the general case of multiple eigenvalues we cannot diagonalize M at once. 
What can be done is to produce, by the above recursive construction, an 
orthogonal matrix OR such that OR*sgoR is decomposed into two blocks. The 
proof is then completed by induction on the size of s~. 

It is a remarkable feature of the above proof that it does not involve 
the spectrum of the symmetric matrix s~. The eigenvalues are in fact obtained 
as a by-product of the recursive construction. 

It is well known that over the field R of real numbers every symmetric 
matrix can be diagonalized. Applying Theorem 1 repeatedly, we obtain the 
following result. 

Theorem 2. Let K = R((tl . . . . .  tin)) be a field of power series in finitely 
many variables and real coefficients. Then every symmetric matrix s~ E 
Mat~(K) can be diagonalized by means of an orthogonal matrix oR ~ Mat,,(K). 

As an immediate consequence we have the following result. 

Corollary. If ~ / is  a symmetric square matrix with entries in a field of 
power series K = R((tl . . . . .  tin)), then its characteristic polynomial 
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pa(k) = det(,~/ - k. $) 

decomposes completely into linear factors. 

3. D E C O M P O S I T I O N S  OF SELF-ADJOINT OPERATORS 

In order to proceed further we first transfer Theorem 2 to the geometric 
framework of vector spaces and linear operators. 

Let K be one of the fields K = R((tt . . . . .  t,,)) and consider the vector 
space En : - -  K n+l together with the canonical inner product (- ,  �9 ) defined by 

((~0 . . . . .  ~.), (n0 . . . . .  ~ ) )  = ~ ~mi 
i=0  

A linear operator T: En ---> E~ is self-adjoint, i.e., (T(x), y) = (x, T(y))  for all 
x, y c E~, iff its matrix (with respect to the canonical base of En) is symmetric. 
Thus we may restate Theorem 2 as follows. 

Theorem 2'. Assume that the linear operator T: E~ --~ E~ is self-adjoint 
with respect to the canonical inner product (- ,  �9 ). Then E~ decomposes into 
an orthogonal direct sum of invariant subspaces of dimension 1. 

As explained in the introduction, our purpose is to establish orthogonal 
decompositions of bounded, self-adjoint linear operators on an infinite-dimen- 
sional orthomodular space by examining their reductions to the finite- 
dimensional residual spaces. Theorem 2' is not strong enough for that 
purpose. The reason is that the residual spaces are endowed with inner 
products (i.e., positive-definite, symmetric bilinear forms) which are essen- 
tially different from the canonical ones. 

We therefore turn to finite-dimensional operators which are self-adjoint 
with respect to more general inner products. Specifically, we consider spaces 
(En, ~n), n = 1, 2 . . . . .  of  the following kind. The base field of (E~, ~ )  is 
the field of power series K~ = R((tl . . . . .  t~)), E~ is an (n + 1)-dimensional 
vector space over Kn with base {e0 . . . . .  en}, and ~ :  En • E~ --> Kn is the 
bilinear form given by 

4P~(ei, ej) = dP~(ej, ei) = 0 for 0-----i<j-----n 

d~.(e0, e0) = 1; ~,,(ei, ei) = ti for 1 ----- i --< n 

We shall express this by writing ~ .  ----- diag(1, t~ . . . . .  t.). Notice that ~n is 
positive definite with respect to the ordering on R((tl . . . . .  t.)) by powers 
oft1 . . . . .  t.. 

We cannot expect that the conclusion of Theorem 2' carries over to self- 
adjoint operators on (E,.  dgn), as can be seen by the following simple example. 
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Let K1 := R((tl)) and consider the two-dimensional space (El, qb0 over Ki 
where qbl = diag(1, tl). Then the operator T: El ~ El given by the matrix 

is certainly self-adjoint. However, T has no eigenvector because its character- 
istic polynomial is 

pt(k) = h 2 -  tl 

which has no root in R((tl)). 
Thus if T: En ~ E,, is self-adjoint with respect to qb ___ d i a g ( 1 , . . . ,  t,,), 

then E, contains, in general, invariant indecomposable subspaces of dimension 
2. The question is whether there exist indecomposable subspaces of even 
higher dimension. The next result shows that this does not happen. 

Theorem 3. Let E, be an (n + 1)-dimensional vector space over R((tt, 
. . . .  t~)) and assume that the linear operator T: En ~ En is self-adjoint with 
respect to the inner product qb = diag(l, q, . . . ,  t,). Then En decomposes 
into an orthogonal direct sum of invariant subspaces each of which is of 
dimension 1 or 2. 

The proof relies on the central idea used to establish Theorem 1: The 
orthogonal matrix ~ = Uo + U~t + U2t z . . .  which decomposes the matrix 
of T is generated by a recursive procedure. The general step in the recursive 
construction is considerably more involved and requires a careful subdivision 
of matrices into several regions. 

4. O P E R A T O R S  ON I N F I N I T E - D I M E N S I O N A L  
O R T H O M O D U L A R  SPACES 

In this final section we study self-adjoint operators on an infinite-dimen- 
sional orthomodular space over a field of generalized power series. The space 
in question can be obtained from the spaces (E,, ~ )  (cf. Section 3) by first 
taking inductive limits, then extending the field of scalars to its maximal 
completion and then completing the space. We will not carry out the details, 
but will give an explicit description of the space thus constructed. 

4.1. The Base Field 

We start with a direct sum 

F : = Z O Z O . . . O Z |  

of countably many copies of the group of integers. F is an Abelian, additive 
group under componentwise operations. We order F antilexicographically. 
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Let K := R((F)) be the field of all generalized power series with expo- 
nents in F and coefficients in R. Thus K consists of all series 

for which the support 

= ~ ,  avt~ (a v E R) 
"/EF 

supp(~) := {y E Fla~ ~ O} 

is a well-ordered subset of F. The operations on K are the obvious ones: if 
= "s a~ tv and ~q = ~v~r b~t ~, then ~ + r I = "Z~r  (a~ + b~)t~ and ~'~1 

= " ~ r  c~t ~, where c v := ~+a'=v a~b~,. 
There is a natural Krull valuation v: K ~ F U {m} on K defined by 

v(~) :=minsupp(~)  i f ~ r  v ( { ) = ~  i f ~ = 0 .  

The valued field (K, v) is a complete and henselian (Ribenboim, 1964). 
F o r i  E N w e l e t  

% := (0 . . . .  ,0,  1, 0, 0 . . . .  ) ~ F where 1 is in the ith place 

and we let ti be the one-term series ti := 1- t v~. Then the topological closure 
of the subfield of (K, v) generated by {tl, tt . . . . .  t~} is (isomorphic to) R((q, 
. . . .  t,)). Thus (K, v) contains an isomorphic copy of each of the fields K,, 
considered in Section 3. 

4.2. The Space (E, @) 

For simplicity we put to := 1. The set 

E := (f;i)i~r% e KU~ series ~ {2t/converges in the valuation topology 
i=0  

is a vector space under componentwise operations. We define a symmetric, 
bilinear form qb on E by 

c~ 

d#(x, y ) : =  ~ ~iaqiti for x = (~i)i~N0, Y = ('qi)i~No 
i = 0  

This completes the construction of the space (E, ~b). 

4.3. Basic Properties of (E, @) 

The most important property is the following. 

Theorem 4 (Gross and Ktinzi 1980, Theorem 28). (E, alp) is an orthomodu- 
lar space. 
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It is readily verified that the map II'll: E --> F U {~} defined by 

Ilxll : =  v(~(x, x)) 

is a non-Archimedean norm on E. The norm-topology, defined by taking the 
sets {x ~ El Ilxll >- ~/} (where ~r varies over F) as a zero-neighborhood basis~ 
turns E into a topological vector space. The form dp is continuous in the 
norm topology. 

Theorem 5 (Gross and KUnzi, 1980, Theorem 28). (i) E is complete in 
the norm topology, i.e., a Banach space. 

(ii) A linear subspace U of E is closed in the norm topology if and only 
if it is orthogonally closed. 

4.4. The Standard Base 

For i ~ No we let 

e i : =  ( 0  . . . . .  0 , 1 , 0  . . . .  ) ~ E 

be the vector that has 1 in place (i + 1) and 0 in all other places. Then r 
ej) = 0 for i :~ j and dP(ei, ei) = ti. Now, {ei l i  c No} is an orthogonal 
continuous base of (E, ~),  that is, every vector x e E can be expressed as 

X :- E ~i ei = lim ~iei 
i=0 n---->~ \ i=O 

The space (E, qb) contains an isometric copy of each of the spaces (E~, ~ )  
considered in Section 3, namely the subspace generated by {e0 . . . . .  e~ } over 
R((tl . . . . .  t~)) C K. 

4.5. Residual Spaces 

For n -- 0, 1, 2 . . . .  the set 

A~ := Z | 1 7 4 1 7 4  {0} | {0} | . . -  c r 
W 

n times 

is a convex (or isolated) subgroup of F. To each A. there corresponds, by 
general valuation theory, a valuation ring R. := {~ ~ KI q~(~) ---> ~ for some 

~ A~} with maximal ideal J.  and residue field K. := R./Jn.  The sets 

M. := {x ~ El~(x, x) ~ R.}, S. : =  {x ~ El~(x, x) ~ J~} 

of all "medium" and all "infinitely small" vectors are Rn-submodules of E. 
The quotient/~n := M . / S .  is naturally a vector space over kn. Moreover, the 
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form dp induces a symmetric bilinear form +n on/~, .  We call (/~,, +n) the 
residual space of (E, ~ )  belonging to the convex group A .  

It is readily verified that: 

(i) k~, is isomorphic to R((tl . . . . .  t,)). 
(ii) (/~,,, ~),) is isometric to (E,, qbn). 

Let "rr,,: M, --~ En = M,/S,, be the canonical epimorphism. Every linear 
subspace U of E is reduced under w, to a linear subspace /7, = v,,(U) := 
{~r,,(x) Ix ~ U N M,, }. The reduction map -rr, preserves orthogonality, i.e., if 
U 3_ W, then ~ ( U )  _1_ rr~(W). 

4.6. Bounded Linear Operators 

A linear operator T: E --~ E is called bounded if the subset 

{llT(x)ll - Ilxll[0 ~ x ~ E} a r 

has an upper bound in F. Clearly, a bounded operator T is continuous with 
respect to the norm topology, and consequently T is determined by its action 
on the vectors ei of the standard base. It follows that a bounded operator can 
be represented by a countably infinite matrix. 

We observe that, in contrast to the classical case of Hilbert spaces, there 
exist linear operators on (E, qb) which are continuous but not bounded. Notice 
also that a bounded operator cannot be assigned a norm in the usual way 
because a bounded subset of F may fail to have a supremum. 

4.7. The Main Result 

We now turn to decompositions of operators. 

Theorem 6. Let (E, ~ )  be the orthomodular space constructed in Sections 
4.1, 4.2. Then every bounded, self-adjoint linear operator T: E --~ E gives 
rise to a representation of E as the closure of an orthogonal direct sum of 
countably many invariant subspaces each of which is of dimension 1 or 2. 
Thus T can be represented as 

O9 

T = ~ Q i  
i = 0  

where the Qi a r e  pairwise orthogonal operators of rank 1 or 2. 

Outline of the Proof. 1. Let there be given a bounded, self-adjoint 
operator T: E ~ E. Multiplying T by some scalar, we may assume that T is 
bounded by ~ = 0; thus IIZ(x)ll - Ilxll - 0 for all 0 v ~ x E E. Then T induces 
an operator L : / ~ ,  --->/~,, on each residual space/~,,, n = 0, 1 . . . . .  We shall 
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identify (/~,, r with its isometric copy (E,,, ~ . )  in (E, qb) and accordingly 
we write T~ instead of T~. 

2. Clearly T~ is self-adjoint with respect to @, -- diag(1 . . . . .  t.). Hence, 
by Theorem 3, every E, can be written as an orthogonal sum 

En = L(nO) ~ •  . . .  @ k  L(nqn) (~.l. p~0) @k . . .  @k p~,) (4) 

of invariant straight lines L~ ) and invariant planes P~). The task is to show 
that these decompositions, when properly chosen, can be lifted to the infinite- 
dimensional space E. To this end we have to interrelate them by means of 
the reduction maps %. 

3. Recall that "IT n preserves orthogonality. Moreover, if a subspace U~+I 
C E,+l is invariant under T~+l, then %(U~+0 C E~ is invariant under T~. 
Notice that either dim w~(U,+l) = dim Un+l or dim %(U,+p = dim U,+l - 1. 

4. Let us consider first the very special case where in every decomposition 
(4) there occur only straight lines and, additionally, these straight lines corre- 
spond to pairwise different eigenvalues k~ i) (0 --- i -< n) of T,. Thus 

E, = L~ ~ O • .-- G k LCn ~+l) (5) 

The assumptions entail that the decompositions (5) are unique. Applying % 
to E~+l = L~n~ •k . . .  Ok L~++ll), we get 

q'rn(En+l) = E .  = "rr.(L~~ 0 k . . .  0 k "rc.(L~ "+'~) = L~ ~ �9 k . . .  0 k L~n '~ 

By uniqueness we conclude that, after renumbering, 

qTn(L(ni)+l) = L(n i) for 0 --< i --< n, "ffn(L(nn++l 1)) = {0} 

Hence we can pick eigenvectors f~/) e L~ i) such that 

'Trn(f(ni)+l) = f~/)  for all i E N and all n ---> i 

Then (f~i))n>_ i is a Cauchy sequence. Let g(i) : = lim,+~f~d). It is readily verified 
that gO0 is an eigenvector for T and g(i) _L gCJ) for i v ~ j. The orthogonal 
family { gCi)li ~ N} is maximal in (E, ~ )  and so it provides the required 
decomposition of the operator T in the present special case. 

5. The general case is much more involved, by lack of uniqueness. The 
first step consists in proving that in any representation (4) the invariant, 
indecomposable planes P~) are uniquely determined by the operator T~; the 
proof of this fact makes essential use of the arithmetic properties of the base 
field R((h . . . . .  t,)) as well as the geometry of the space (E,, ~ ) .  Next, 
collecting in (4) all straight lines that correspond to the same eigenvalue, we 
obtain a decomposition 

E ,  = U(n ~ 0 • " '"  G k U(ff n) ~J"  p(O) O k  . . .  G •  p(~,) (6) 

where each U (i) is the eigenspace of some eigenvalue h(, i) of T,. 
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Now the decompositions (6) are unique. We observe that an indecompos- 
able plane Pl/+)l _C En+l is reduced under ~n to either an indecomposable 
plane or an invariant straight line of En. Furthermore, (J~ �9 r,,(U~+l) is spanned 
by eigenvectors belonging to the same eigenvalue of Tn. Notice, however, 
that two eigenspaces U(,;)+I and U}~QI belonging to different eigenvalues of 
Tn+l are possibly reduced to spaces ~r,,(un+l)" '") and ~r,,~,~+l:(r:(i) ~ belonging to the 
same eigenvalue of T,.  From these remarks we deduce that every p(i) is equal 
to some ~r,,(P~/+)l) and every UI/) is the orthogonal sum of some 
Ti'n(UIj]+) l ) '  S. 

It is convenient to add the zero-space Z, := {0} C E~ to every decomposi- 
tion (6). Put 

�9 = { U ( f , P ~ ) , Z , , I n  E N0,0 < - i ~ s , , O  < - j < -  r ,}  

We define a partial ordering < on ~ by the rules 
u~/> < ,r<J> ~J> ~-'n+l ~ {0} ~ u(i). p(n i) D(j) (j) "~,,(U,,+t) C_ < ~,,+ r ~,,(Pn+l) = PID 

U(, i) < P ~ I  r zr. (P(j).\ n+l]' C_ U}[ ) Zn < Il(j)t.jn+[ ~ qTn(Un+l = Zn 

Then (6, -<) is a tree. A combinatorial argument shows that the decomposi- 
tions (6) can be refined in such a way that the resulting tree has no ramifications 
except on top of the zero-spaces Z,,. In each branch of this tree we can now 
proceed as in step 4. This completes the proof. 

We have thereby reached a decomposition theorem which is remarkably 
close to the classical spectral theorem for operators on complex Hilbert 
spaces. The methods of proof, however, are entirely different. 
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